Alpen Steel | Renewable Energy

Rubrik ini adalah kumpulan artikel tentang energi yang di-upload oleh para member kami. Semoga bermanfaat bagi pengunjung yang ingin: mencari kumpulan referensi tentang energi, mengetahui seluk beluk tentang energi terbarukan secara khusus, mengaplikasikan energi terbarukan dilingkungannya. 

Teknologi energi adalah teknologi yang terkait dengan bidang-bidang mulai dari sumber, pembangkitan, penyimpanan, konversi -energi dan pemanfaatannya untuk kebutuhan manusia. Sektor kebutuhan utama yang paling besar dalam jumlah untuk massa mendatang adalah sektor kelistrikan dan sektor transportasi. Sumber energi dapat digolongkan menjadi dua bagian yaitu energi terbarukan dan energi tak terbarukan. Dalam pembangkitan energi beberapa sistem pembangkitan yang telah digunakan untk memenuhi kebutuhan energi didunia, seperti: pembangkit listrik tenaga air /PLTA, pembangkit listrik tenaga surya/PLTS, pembangkit listrik tenaga uap dan gas/PLTU,PLTG, pembangkit listrik panas bumi/PLTP, pembangkit listrik tenaga angin/bayu/PLTB, pembangkit listrik tenaga gelombang laut/PLTGL, dan pembangkit listrik tenaga nuklir/PLTN. Dari Wikipedia bahasa Indonesia, ensiklopedia bebas.



~ Kereta Api Berenergi Solar Cell

Sepur Solar Cell

Siapa yang tidak pernah merasakan kenikmatan menggunakan alat transportasi yang satu ini ? ya…kereta api atau bagi orang jawa disebut SEPUR. Sepur dengan berbagai jenis mulai dari yang bertaraf eksekutif hingga ekonomi dapat kita jumpai hampir di daerah jawa. Kali ini tidak akan dibahas siapa yang bakalan naik sepur, tetapi mari kita tinjau panasnya Indonesia alias mari kita gunakan sumber daya alam yang sangat melimpah ruag ini. Semua pasti tahu cahaya matahari, merupakan salah satu energi yang tidak akan habis. Mari kita sangkutpautkan antara cahaya matahari dengan sepur.

Terkadang teknologi di Indonesia kurang begitu mendapatkan respon yang positif dari pemerintah, pemerintah kita lebih sibuk mengurus politik dibandingkan memikirkan teknologi yang semakin berkembang pesat ini, salah satunya teknologi terbarukan ( RENEWABLE TECHNOLOGY ), yup…,pemerintah lebih hanya sebagai penelitian belaka.

Pemerintah kita lagi sibuk - sibuknya memikirkan bagaimana mulai mengganti BBM yang sekarang ini mulaui mengalami krisis, sehingga dilakukan penelitian di bidang renewable fuel. Mulai dari biofuel,fuelcell,bahkan sampai solar cell. Nah…, yang akan kita bahas ini adalah solar cell, lebih jelasnya jika dihubungkan dengan transportasi beroda banyak dengan solar cell, SOLAR CELL SEPUR.

Kok bisa dinamakan SOLAR CELL SEPUR, terinspirasi dari panasnya kota surabaya khususnya dan negara indonesia umumnya, kita bisa menggunakan teknologi solar cell pada sepur. Gimana caranya ???. Pemerintah Indonesia kan banyak uang tuh, jadi beli solar cell secara borongan, kemudian pada atap sepur di pasang solar cell sepanjang gerbong kereta api. kelebihannya atap gerbong tidak jadi tempat duduk penumpang sehingga mengurangi kematian penduduk.

Setidaknya sepur indonesia lebih maju sedikitlah…dan pemerintah indonesia bisa bergaya dengan memanfaatkan teknologi.

Bravo Penelitian Indonesia…..(AD/ITS)


 

~ Masa Depan Energi Surya Di Indonesia

Prospek PLTS di Indonesia

Energi baru dan terbarukan mulai mendapat perhatian sejak terjadinya krisis energi dunia yaitu pada tahun 70-an dan salah satu energi itu adalah energi surya. Energi itu dapat berubah menjadi arus listrik yang searah yaitu dengan menggunakan silikon yang tipis. Sebuah kristal silindris Si diperoleh dengan cara memanaskan Si itu dengan tekanan yang diatur sehingga Si itu berubah menjadi penghantar. Bila kristal silindris itu dipotong stebal 0,3 mm, akan terbentuklah sel-sel silikon yang tipis atau yang disebut juga dengan sel surya fotovoltaik. Sel-sel silikon itu dipasang dengan posisi sejajar/seri dalam sebuah panel yang terbuat dari alumunium atau baja anti karat dan dilindungi oleh kaca atau plastik. Kemudian pada tiap-tiap sambungan sel itu diberi sambungan listrik. Bila sel-sel itu terkena sinar matahari maka pada sambungan itu akan mengalir arus listrik. Besarnya arus/tenaga listrik itu tergantung pada jumlah energi cahaya yang mencapai silikon itu dan luas permukaan sel itu.

Pada asasnya sel surya fotovoltaik merupakan suatu dioda semikonduktor yang berkerja dalam proses tak seimbang dan berdasarkan efek fotovoltaik. Dalam proses itu sel surya menghasilkan tegangan 0,5-1 volt tergantung intensitas cahaya dan zat semikonduktor yang dipakai. Sementara itu intensitas energi yang terkandung dalam sinar matahari yang sampai ke permukaan bumi besarnya sekitar 1000 Watt. Tapi karena daya guna konversi energi radiasi menjadi energi listrik berdasarkan efek fotovoltaik baru mencapai 25%, maka produksi listrik maksimal yang dihasilkan sel surya baru mencapai 250 Watt per m2 . Dari sini terlihat bahwa PLTS itu membutuhkan lahan yang luas. Hal itu merupakan salah satu penyebab harga PLTS menjadi mahal. Ditambah lagi harga sel surya fotovoltaik berbentuk kristal mahal, hal ini karena proses pembuatannya yang rumit. Namun, kondisi geografis Indonesia yang banyak memiliki daerah terpencil sulit dibubungkan dengan jaringan listrik PLN. Kemudian sebagai negara tropis Indonesia mempunyai potensi energi surya yang tinggi. Hal ini terlihat dari radiasi harian yaitu sebesar 4,5 kWh/m2/hari. Berarti prospek penggunaan fotovoltaik di masa mendatang cukup cerah. Untuk itulah perlu diusahakan menekan harga fotovoltaik misalnya dengan cara sebagai berikut. Pertama menggunakan bahan semikonduktor lain seperti Kadmium Sulfat dan Galium Arsenik yang lebih kompetitif. Ke dua meningkatkan efisiensi sel surya dari 10% menjadi 15%.

Energi listrik yang berasal dari energi surya pertama kali digunakan untuk penerangan rumah tangga dengan sistem desentralisasi yang dikenal dengan Solar Home System (SHS), kemudian untuk TV umum, komunikasi dan pompa air. Sementara itu evaluasi program SHS di Indonesia pada proyek Desa Sukatani, Bampres, dan listrik masuk desa menunjukkan tanda-tanda yang menggembirakan dengan keberhasilan penerapan secara komersial. Berdasarkan penelitian yang dilakukan sampai tahun 94 jumlah pemakaian sistem fotovoltaik di Indonesia sudah mencapai berkisar 2,5-3 MWp. Yang pemakaiannya meliputi kesehatan 16% ; hibrida 7% ; pompa air 5% ; penerangan pedesaan 13% ; Radio dan TV komunikasi 46,6% dan lainnya 11,8%. Kemudian dari kajian awal BPPT diperoleh proyeksi kebutuhan sistem PLTS diperkirakan akan mencapai 50 MWp. Sementara itu menurut perkiraan yang lain pemakaian fotovoltaik di Indonesia 5-10 tahun mendatang akan mencapai 100 MW terutama untuk penerangan di pedesaan. Sedangkan permintaan fotovotaik diperkirakan sudah mencapai 52 MWp.

Fotovoltaik

Komponen utama sistem surya fotovoltaik adalah modul yang merupakan unit rakitan beberapa sel surya fotovoltaik. Untuk membuat modul fotovoltaik secara pabrikasi bisa menggunakan teknologi kristal dan thin film. Modul fotovoltaik kristal dapat dibuat dengan teknologi yang relatif sederhana, sedangkan untuk membuat sel fotovoltaik diperlukan teknologi tinggi. Modul fotovoltaik tersusun dari beberapa sel fotovoltaik yang dihubungkan secara seri dan paralel. Biaya yang dikeluarkan untuk membuat modul sel surya yaitu sebesar 60% dari biaya total. Jadi, jika modul sel surya itu bisa diproduksi di dalam negeri berarti akan bisa menghemat biaya pembangunan PLTS. Untuk itulah, modul pembuatan sel surya di Indonesia tahap pertama adalah membuat bingkai (frame), kemudian membuat laminasi dengan sel-sel yang masih diimpor. Jika permintaan pasar banyak maka pembuatan sel dilakukan di dalam negeri. Hal ini karena teknologi pembuatan sel surya dengan bahan silikon single dan poly cristal secara teoritis sudah dikuasai. Dalam bidang fotovoltaik yang digunakan pada PLTS, Indonesia ternyata telah melewati tahapan penelitian dan pengembangan dan sekarang menuju tahapan pelaksanaan dan instalasi untuk elektrifikasi untuk pedesaan. Teknologi ini cukup canggih dan keuntungannya adalah harganya murah, bersih, mudah dipasang dan dioperasikan dan mudah dirawat. Sedangkan kendala utama yang dihadapi dalam pengembangan energi surya fotovoltaik adalah investasi awal yang besar dan harga per kWh listrik yang dibangkitkan relatif tinggi, karena memerlukan subsistem yang terdiri atas baterai, unit pengatur dan inverter sesuai dengan kebutuhannya.

Hibrida

Dalam penerapannya fotovoltaik dapat digabungkan dengan pembangkit lain seperti pembangkit tenaga diesel (PLTD) dan pembangkit listrik tenaga mikro hidro (PLTM). Penggabungan ini dinamakan sistem hibrida yang tujuannya untuk mendapatkan daya guna yang optimal. Pada sistem ini PLTS merupakan komponen utama, sedang pembangkit listrik lainnya digunakan untuk mengkompensasi kelemahan sistem PLTS dan mengantisipasi ketidakpastian cuaca dan sinar matahari. Pada sistem PLTS-PLTD, PLTD-nya akan digunakan sebagai "bank up" untuk mengatasi beban maksimal. Pengkajian dan penerapan sistem ini sudah dilakukan di Bima (NTB) dengan kapasitas PLTS 13,5 kWp dan PLTD 40 kWp.

Penggabungan antara PLTS dengan PLTM mempunyai prospek yang cerah. Hal ini karena sumber air yang dibutuhkan PLTM relatif sedikit dan itu banyak terdapa di desa-desa. Untuk itulah pemerintah Indonesia dengan pemerintah Jepang telah merealisasi penerapan sistem model hidro ini di desa Taratak (Lombok Tengah) dengan kapasitas PLTS 48 kWp dan PLTM sebesar 6,3 kW.

Pada sistem hibrida antara fotovoltaik dengan Fuel Cell (sel bahan bakar), selisih antara kebutuhan listrik pada beban dan listrik yang dihasilkan oleh fotovoltaik akan dipenuhi oleh fuel cell. Controller berfungsi untuk mengatur fuel cell agar listrik yang keluar sesuai dengan kepeluan. Arus DC yang dihasilkan fuel cell dan arus fotovoltaik digabungkan pada tegangan DC yang sama kemudian diteruskan ke power conditioning subsystem ( PCS ) yang berfungsi untuk mengubah arus DC menjadi arus AC. Keuntungan sistem ini adalah efisiensinya tinggi sehingga dapat menghemat bahan bakar, dan kehilangan daya listrik dapat diperkecil dengan menempatkan fuel cell dekat pusat beban.

Sistem PLTS

PLTS dengan sistem sentralisasi artinya pembangkit tenaga listrik dilakukan secara terpusat dan suplai daya ke konsumen dilakukan melalui jaringan distribusi. Sistem ini cocok dan ekonomis pada daerah dengan kerapatan penduduk yang tinggi. Contohnya PLTS di Desa Kentang Gunung Kidul mempunyai kapasitas daya 19 kWp, kapasitas baterai 200 volt dan beban berupa penerangan yang terpasang pada 85 rumah. Sementara itu PLTS dengan sistem individu daya terpasangnya relatif kecil yaitu sekitar 48-55 Wp. Jumlah daya sebesar 50 Wp per rumah tangga diharapkan dapat memenuhi kebutuhan penerangan, informasi (TV dan Radio) dan komunikasi (Radio komunikasi). Dan sampai tahun 95 sistem ini sudah terpasang sekitar 10.000 unit yang tersebar di seluruh perdesaan Indonesia dan pengelolaannya yang meliputi pemeliharaan dan pembayaran dilaksanakan oleh KUD.

Melihat trend harga sel surya yang semakin menurun dan dalam rangka memperkenalkan sistem pembangkit yang ramah lingkungan, pemanfaatan PLTS dengan sistem individu semakin ditingkatkan. Pada tahap pertama direncanakan akan dipasang 36.000 unit SHS selama tiga tahun dengan prioritas 10 propinsi di kawasan timur Indonesia. Paling tidak ada 5 keuntungan pembangkit dengan surya fotovoltaik. Pertama energi yang digunakan adalah energi yang tersedia secara cuma-cuma. Kedua perawatannya mudah dan sederhana. Ketiga tidak terdapat peralatan yang bergerak, sehingga tidak perlu penggantian suku cadang dan penyetelan pada pelumasan. Keempat peralatan bekerja tanpa suara dan tidak berdampak negatif terhadap lingkungan. Kelima dapat bekerja secara otomatis.

Oleh : Deni Almanda
Dosen Teknik Elektro Universitas Muhammadiyah Jakarta

 


 

~ Teknologi Fuel Cell Sebagai Energi Alternatif

Fuel Cell sebagai Pembangkit Hidrogen : Energi Alternatif yang Dihantui Kendala

Melambungnya harga BBM tak membuat penggunaan bahan bakar fosil berkurang. Memang sudah saatnya dipikirkan mencari pengganti BBM. Teknologi fuel cell bisa menjadi salah satu alternatif. Namun entah kapan realisasinya.

Sumber energi alternatif sudah lama didengungkan untuk segera dipakai. Bahkan Departemen Energi dan Sumber Daya Mineral (ESDM) menargetkan pada tahun 2020 mendatang penggunaan energi alternatif sudah mencapai lima persen. Kebijakan ihwal energi alternatif pun tak kalah banyak. Dari sisi teknologi dan ketersediaan bahan baku juga sudah tak diragukan lagi.

Salah satu teknologi yang ditawarkan adalah fuel cell yang berbahan bakar dasar hidrogen. "fuel cell adalah perangkat elektronika yang mampu mengonversi perubahan energi bebas suatu rekasi elektronikia menjadi energi listrik," jelas Isdiriyani Nurdin, peneliti sekaligus pengajar di Departemen Teknik Kimia Institut Teknologi Bandung (ITB) dalam diskusi mengenai teknologi fuel cell di Balai Pengkajian dan Penerapan Teknologi (BPPT), Jakarta, akhir pekan silam.

Prinsip kerja fuel cell adalah proses elektrokimia di mana hidrogen dan oksigen digunakan sebagai bahan bakar. Komponen utama fuel cell terdiri dari elektrolit berupa lapisan khusus yang diletakkan di antara dua buah elektroda. Proses kimia yang disebut pertukaran ion terjadi di dalam elektrolit ini dan menghasilkan listrik serta air panas. fuel cell menghasilkan energi listrik tanpa adanya pembakaran dari bahan bakarnya, sehingga tidak ada polusi.

Kendala

Berbeda dengan baterai, fuel cell tidak hanya menyimpan tetapi juga menghasilkan energi listrik secara berkesinambungan selama masih ada pasokan bahan bakar. Kelebihan teknologi yang oleh Isdiriyani ini diindonesiakan menjadi sel tunam adalah efisiensinya, tidak bising, hampir tak menghasilkan bahan pencemar sama sekali, serta banyak pilihan bahan bakar.

Walau demikian, dari sisi teknis dianggap hidrogen merupakan bahan bakar paling ideal bagi sel tunam. Menurut Isdiriyani ini disebabkan hidrogen mempunyai kandungan energi per satuan berat tertinggi di antara berbagai jenis bahan akar. Yang menjadi masalah adalah proses menghasilkan hidrogen. Walau hidrogen merupakan unsur yang paling banyak terdapat di alam semesta namun keberadaannya terikat sebagai senyawa oksida. Maka untuk menghasilkan gas hidrogen diperlukan tenaga listrik yang sebagian besar dihasilkan dari sumber energi penyebab polusi.

Masalah lain yang akan timbul jika hidrogen digunakan sebagai bahan bakar adalah kebutuhan infrastruktur untuk pendistribusian hidrogen ke tempat penggunanya. "Alternatifnya adalah membangun tempat pengisian ulang bahan bakar beserta dengan pembangkitnya sekaligus," papar Isdiriyani. Inilah yang banyak dilakukan di sejumlah negara maju yang sudah mengaplikasikan sel tunam sebagai bahan bakar kendaraan.

Di banyak negara maju, teknologi sel tunam sudah bukan barang baru lagi. Negara seperti Amerika Serikat (AS), Jepang, Jerman atau Inggris telah mengembangkan teknologi ini sejak lama. Di negara ini yang menjadi pemicu pemakaian hidrogen sebagai bahan bakar kendaraan adalah isu lingkungan dan konservasi energi. Produsen kendaraan seperti General Motors (GM) misalnya sudah merilis prototipe mobil berbahan bakar hidrogen. Mobil yang rencananya akan komersial pada tahun 2010 ini menggunakan sel tunam berbentuk wafer yang berfungsi memisahkan atom hidrogen menjadi proton dan elektron. Dengan memakai elektron sebagai arus listrik, digabungkan proton dengan oksigen dari udara, sehingga hasil sampingnya hanya uap air.

Untuk menghasilkan tenaga penggerak mobil diperlukan rangkaian yang terdiri dari 372 sel wafer. Kendati sudah mampu mengaplikasikan teknologi tersebut, bukan berarti semuanya berjalan mulus. GM mengklaim bahwa berkendara di atas tangki hidrogen mampat amat tidak nyaman dibanding dengan di atas tangki bensin. Mobil yang sempat dipamerkan dalam ajang North American International Auto Show ini dapat menempuh jarak hampir 500 kilometer sebelum harus mengisi ulang bahan bakar. Selain ada kendala di bidang kenyamanan, mobil hidrogen ini relatif mahal, yakni sekitar 700.000 dolar AS.

Bulan lalu, perusahaan asal Kanada meluncurkan generator sel tunam model E8 Portable Power yang berisi dua buah modul sel tunam Powerstack MC250. Pembangkit listrik portabel ini mempunyai kapasitas 2,4 kW dengan tegangan 48 Vdc pada arus 50 A dan efisiensi listrik lebih dari 50 persen. Pembangkit ini ditujukan bagi penerapan stasioner seperti back up untuk tanggap darurat bagi pengguna komersial maupun militer.

Komputer Hidrogen

Bukan hanya kendaraan bermotor saja yang dianggap layak memanfaatkan sel tunam, melainkan juga bidang teknologi informasi (TI). Produsen komputer jinjing (laptop) Jepang misalnya, mengembangkan teknologi ini pada sejumlah produknya. Tidak semua sel tunam bisa dipakai untuk alat elektronik portabel, hanya sel tunam metanol langsung (direct methanol fuel cell) yang termasuk sel tunam alkalin saja yang bisa. Apabila diproduksi secara masal maka harga sel tunam bisa bersaing dengan baterai Lithium-ion yang kini banyak digunakan. Densitas energinya bahkan bisa 5-10 kali lebih besar baterai Lithium-ion.

Bagaimana di Indonesia" Achyar Umri, peneliti dari Pusat Penelitian Fisika Lembaga Ilmu Pengetahuan Indonesia (LIPI) menyatakan sel tunam hanya sebagai konverter alias pembangkit saja. Bahan bakar utamanya adalah hidrogen yang sumbernya sangat banyak di Indonesia. "Posisi Indonesia di tingkat Asia dalam penghasilan energi per kapitanya masih sangat rendah. Padahal sumber energi alternatif tersebar begitu banyak,? ujar Achyar. Hidrogen dianggap seba

gai energi alternatif paling ideal karena hidrogen merupakan bahan universal dengan jumlah tak terbatas dan yang jelas ramah lingkungan.

Namun bagaimana dengan kebijakan pemerintah sendiri?

Kebijakan di bidang energi alternatif memang sudah cukup banyak. Evita Legowo, Kepala Pusat Penelitian dan Pengembangan Teknik Minyak dan Gas ESDM menekankan pihaknya amat mendukung pengembangan teknologi sel tunam berbahan dasar hidrogen. Ia bahkan mengajak semua pihak yang berkepentingan untuk mendiskusikan langkah kebijakan apa yang perlu diambil demi terealisasinya aplikasi teknologi tersebut. Masalah adalah: apabila di negara maju yang sudah berhasil mengaplikasikannya saja teknologi tersebut masih berupa prototipe, berarti bagi Indonesia masih dibutuhkan jalan panjang dan berliku.

Merry Magdalena

Sumber : Sinar Harapan 

 

~ Gas Metana Untuk Pengembangan Fuel Cell

Potensi Metana Terbuang Percuma

Akibat kesalahan prosedur dalam pengelolaan tempat pembuangan akhir sampah di Indonesia, potensi gas metana yang ada jadi mubazir. Padahal, reduksi gas metana paling berpotensi ditawarkan masuk program untuk mendapatkan insentif dari negara maju sesuai dengan Protokol Kyoto.

Demikian hasil studi Badan Pengkajian dan Penerapan Tek­nologi (BPPT) bekerja lama dengan Tohoku Electric Power dan Kajima, Jepang.

"Jumlah komposisi sampah or­ganik di Indonesia lebih banyak, sekitar 60 persen, semestinya menghasilkan metana berlimpah. 1Dari hasil studi melalui penge­boran tempat pembuangan akhir (TPA) sampah di beberapa kota, gas,metana terdeteksi relatif se­dikit akibat prosedur sanitary landfill (pengelolaan sampah de­ngan pengurukan) tak berjalan," kata Koordinator Tim. Mekanis­me Pembangunan Bersih (Clean Development Mechanism/CDM) BPPT Irhan Febijanto, Minggu (7/10) di Jakarta.

Gas metana memiliki daya rusak atmosfer 21 kali lipat karbon dioksida. Proses pembentukan nya dari pelapukan sampah or­ganik Menurut Irhan, selama ini untuk mengurangi metana di TPA terlepas ke alam biasanya

disalurkan ke pipa lalu dibakar. Pembakaran itu untuk mengubah metana jadi gas karbon dioksida.

"Namun, hampir di semua TPA cara ini tidak bisa berjalan se­bagaimana semestinya," katanya.

Mengenai salah prosedur TPA, Irhan mengingatkan, semestinya sampah yang baru tiba segera ditutup tanah. Proses pelapukan kemudian akan berlangsung an­aerob, yaitu tanpa oksigen. Saat ini proses pelapukannya justru secara terbuka atau secara aerob dengan oksigen sehingga jumlah metana yang terbentuk pun tidak optimal. Akibatnya, potensi pro­duksi metana menjadi terbuang.

"Dari lapisan sampah yang ter­tutup tanah, gas metana bisa di­ambil melalui penyaluran pipa. Program tim CDM BPPT sejauh ini mengupayakan reduksi me­tana melalui pembakaran. Mes­tinya tiap pemerintah daerah juga mampu mendorong supaya ter­jadi industrialisasi untuk mem­produksi metana," kata Irhan.

Industrialisasi metana itu sen­diri diyakini mampu menunjang ekonomi serta perbaikan iklim secara global. Dari metana bisa dihasilkan 90 persen hidrogen dan 10 persen karbon dioksida. Hidrogen itu kemudian diguna­kan untuk bahan bakar fuel cell (teknologi produksi energi ber­bahan bakar hidrogen) yang pa­ling ramah lingkungan dengan menghasilkan limbah air murni.

Eniya Listiani Dewi, peneliti fuel cell BPPT, menambahkan bahwa selama ini ada ketergan­tungan impor metana untuk pe­ngembangan fuel cell. Di antara­nya, untuk membeli metana ha­rus impor dari negara terdekat seperti Singapura. Harga metana dengan kapasitas 7.000 liter saja bisa mencapai Rp 12 juta.

"Kalau produksi metana dila­kukan di dalam negeri, meng­ingat potensi berlimpah, ini akan menunjang pengembangan tek­nologi fuel cell untuk mempro­duksi listrik di Indonesia dengan limbah air murni," kata Eniya.

Menurut Irhan, untuk menun­jang industrialisasi metana di In­donesia, pemerintah perlu memperbaiki regulasi yang ada. Re­gulasi itu di antaranya mengatur persoalan penciptaan infrastruk­tur dengan memanfaatkan aset pemerintah dengan diwajibkan melalui tender.


Sumber: Kompas
 

~ Fullerene Sebagai Material Khas Masa Depan

FULLERENE, Material Unik Harapan Masa Depan

Jenis Material ini mungkin belum banyak dikenal. Namun, sebenarnya tengah mendapat perhatian yang luar biasa, khususnya para peneliti teknologi nano. Selain menarik dikaji secara ilmiah, fullerene juga berpotensi besar diaplikasikan dalam berbagai bidang. Penemu material tersebut, meraih penghargaan Nobel bidang kimia tahun 1996.

Satu nano-meter sama dengan sepermiliar meter. Sebelum penemuan itu, para ahli kimia karbon tidak menyangka bahwa akan ditemukan material lagi dari unsur karbon.250px_C60_Fulleren_kristallin.JPG

Fullerene tersusun dari unsur murni karbon berjumlah 60 atom (dikenal dengan C60) atau lebih yang antara satu dengan lainnya terhubung dengan ikatan kimia berjenis orbital sp3. Selama ini telah dikenal beberapa jenis fullerene seperti C60, C70, C120, dan lain-lain. Dari jenis tersebut, C60 merupakan material yang paling populer karena yang ditemukan pertama dan berbentuk unik seperti bola sepak.

Sebelum fullerene muncul, para ahli kimia karbon beranggapan bahwa tidak ada lagi material dari unsur karbon yang lebih stabil dari berlian dan grafit. Karena itu, munculnya fullerene dengan komposisi unsur karbon simetris dan bentuk yang elok, amat menyegarkan iklim penelitian di bidang kimia karbon. Penemuan fullerene memicu ditemukannya material baru bernama carbon nanotube (disingkat CNT) berbentuk pipa, yang tidak kalah penting di bidang teknologi nano.

Kalau awalnya para ahli hanya mengakui kalau zat C60 bersifat stabil, maka baru pada tahun 1990, dua peneliti bernama W Kratschmer dari Jerman dan D Huffman dari Amerika dalam suatu kerja sama penelitian, berhasil memproduksi C60 dalam skala besar dengan metode baru. Hasilnya, bentuk C60 bisa diukur dan dibuktikan memang seperti bola sepak seperti prediksi penemunya.

Hasil eksperimen tersebut menguatkan keberadaan fullerene dan sekaligus membuat penasaran para peneliti untuk menguji karakteristiknya. Maka menjamurlah penelitian dengan fokus fullerene dari berbagai macam disiplin ilmu.

DILIHAT dari sifat penghantar listrik, pada umumnya fullerene bersifat isolator. Tetapi, jika logam alkali didoping/dimasukkan ke dalam fullerene, maka pada suhu ruangan material ini akan bersifat sebagai logam. Telah ditemukan juga, jika unsur "kalium" yang didopingkan, benda tersebut berubah menjadi superkonduktor.

Tahun 2001 ditemukan lagi keunikan material baru tersebut, yakni bahwa fullerene bersifat sebagai magnet pada suhu dan tekanan yang tinggi. Dengan metode lain bisa didapatkan pula fullerene yang bersifat sebagai semikonduktor. Begitulah, banyak fenomena-fenomena unik yang muncul dari fullerene ini, yang mungkin masih akan terus bertambah.

Sifatnya penghantar fullerene yang bisa dikontrol, struktur dalam ukuran nanometer, dan sifat kimiawi yang stabil inilah yang menarik perhatian para peneliti karena yakin bisa diaplikasikan di bidang elektronika terutama kuantum.

Sekarang saja telah banyak perusahaan-perusahaan elektronika, terutama di Jepang (seperti Toshiba, Sumitomo Kagaku, Osaka Gas, Mitsubishi Kagaku, dan lain-lain) memakai material fullerene untuk mengembangkan solar cell (penghasil energi dari sinar matahari). Selain cost-down yang memungkinkan, fullerene berpotensi menghasilkan solar cell dengan efisiensi yang lebih tinggi dibanding solar cell dari poli-silikon sekarang.

Fullerene juga berpotensi digunakan dalam pengembangan fuel cell, sebagaimana dilakukan grup peneliti di Institut Teknologi California dan perusahaan Sony Jepang. Fuel cell adalah jenis baterai pembangkit energi listrik dari reaksi kimia antara gas hidrogen dan oksigen. Karena output-nya hanya menghasilkan air saja, teknologi ini tidak polusif dan sangat ramah lingkungan.

Dalam baterai fuel cell, penggunaan fullerene diharapkan bisa menghasilkan fuel cell dalam ukuran kecil yang tidak bisa direalisasikan dengan bahan yang dipakai sekarang.

APLIKASI lain dari fullerene adalah untuk hardisk komputer, karena fullerene punya sifat magnet dalam kondisi tertentu. Fullerene juga bisa diaplikasikan dalam bidang kesehatan.

Konon, fullerene berpotensi untuk mencegah perkembangan virus HIV (Human Immunodeficiency Virus), yang berarti memungkinkan dipakai sebagai obat AIDS (Acquired Immuno Deficiency Syndrome).

Begitu kaya untuk dikaji secara keilmuwan dan besarnya potensi yang dimiliki fullerene ini, membuat ketiga penemunya mendapat penghargaan Nobel bidang kimia pada tahun 1996.

Sumber : Kompas

 

 
Halaman 757 dari 1047
PageRank  Hit Counters
free counters
Alpen Steel Facebook