Alpen Steel | Renewable Energy

Solar Cells

Solar cells (as the name implies) are designed to convert (at least a portion of) available light into electrical energy. They do this without the use of either chemical reactions or moving parts.

History
The development of the solar cell stems from the work of the French physicist Antoine-César Becquerel in 1839. Becquerel discovered the effect while experimenting with a solid electrode in an electrolyte solution; he observed that  developed when light fell upon the electrode. About 50 years later, Charles Fritts constructed the first true solar cells using junctions formed by coating the selenium with an ultrathin, nearly transparent layer of gold. Fritts's devices were very inefficient, transforming less than 1 percent of the absorbed light into electrical energy.

By 1927 another metalÐ-junction solar cell, in this case made of copper and the  copper oxide, had been demonstrated. By the 1930s both the selenium cell and the copper oxide cell were being employed in light-sensitive devices, such as photometers, for use in photography. These early solar cells, however, still had energy-conversion efficiencies of less than 1 percent. This impasse was finally overcome with the development of the silicon solar cell by in 1941. In 1954, three other American researchers, G.L. Pearson, Daryl Chapin, and Calvin Fuller, demonstrated a silicon solar cell capable of a 6-percent energy-conversion efficiency when used in direct sunlight. By the late 1980s silicon cells, as well as those made of gallium arsenide, with efficiencies of more than 20 percent had been fabricated. In 1989 a concentrator solar cell, a type of device in which sunlight is concentrated onto the cell surface by means of lenses, achieved an efficiency of 37 percent due to the increased intensity of the collected energy. In general, solar cells of widely varying efficiencies and cost are now available.

Structure
Modern solar cells are based on  physics -- they are basically just with a very large light-sensitive area. The  effect, which causes the cell to convert light directly into electrical energy, occurs in the three energy-conversion layers.

Image
Diagram courtesy U.S. Department of Energy 

The first of these three layers necessary for energy conversion in a solar cell is the top junction layer  The next layer in the structure is the core of the device; this is the absorber layer (the Pn Fungtion. The last of the energy-conversion layers is the back junction layer 

As may be seen in the above diagram, there are two additional layers that must be present in a solar cell. These are the electrical contact layers. There must obviously be two such layers to allow electric Cureent to flow out of and into the cell. The electrical contact layer on the face of the cell where light enters is generally present in some grid pattern and is composed of a good conductor such as a metal. The grid pattern does not cover the entire face of the cell since grid materials, though good electrical conductors, are generally not transparent to light. Hence, the grid pattern must be widely spaced to allow light to enter the solar cell but not to the extent that the electrical contact layer will have difficulty collecting the current produced by the cell. The back electrical contact layer has no such diametrically opposed restrictions. It need simply function as an electrical contact and thus covers the entire back surface of the cell structure. Because the back layer must be a very good electrical  it is always made of metal.

Operation
Solar cells are characterized by a maximum Open Circuit Voltage  at zero outp and a Short Circuit Ceren (ISC)at zero output voltage. Since power can be computed via this equation:

P = I * VThen with one term at zero these conditions (V = Voc / I = 0, V = 0 / I = Isc) also represent zero power.As you might then expect, a combination of less than maximum  and  can be found that maximizes the power produced (called, not surprisingly, the "maximum power point"). Many  designs (and, in particular) attempt to stay at (or near) this point. The tricky part is building a design that can find the maximum power point regardless of lighting conditions.For solar cell selection and comparison information, see the  of the collection. Also see theThis work licensedunder a Creative Commons License.

 

  Anda belum mendaftar atau login.
Anda dapat turut serta menuliskan artikel disini, caranya klik disini
Ada pertanyaan? Ingin berdiskusi? silahkan tulis di Alpensteel Forum

Fast Contact

Show Room & Factory:
 
Jalan Laksanama
Nurtanio Nomor 51
Bandung 40183 - Indonesia
 
Phone Line1:
022- 603-8050 (08:00-17:00)
 
Handphone:
0852-111-111-77 
0852-111-111-100
 
 
 
PageRank  Hit Counters
free counters
Alpen Steel Facebook